Energie des rayons bêta
Les rayons bêta n’ont pas tous la même énergie
L’énergie libérée lors d’une désintégration bêta se partage entre trois participants : le noyau qui recule, l’électron et l’antineutrino. Le noyau, dont la masse est très lourde par rapport aux deux autres participants, n’emporte pratiquement pas d’énergie. L’électron emporte en moyenne un peu moins de la moitié de l’énergie disponible.
Dans le cas rare d’une désintégration bêta plus, c’est le positon qui joue le rôle de l’électron, un neutrino celui de l’antineutrino, mais le scénario et le partage sont similaires.
La répartition en énergie des électrons – appelée spectre bêta – présente une forme caractéristique. Dans le partage de l’énergie, la part emportée par le noyau émetteur est négligeable de telle sorte que dans la pratique le partage est entre l’électron bêta et l’antineutrino. L’énergie de l’électron est maximale quand il emporte toute l’énergie de la désintégration. Elle devient nulle, quand c’est l’antineutrino.
La forme du spectre bêta est très asymétrique. L’antineutrino dont la masse est quasi nulle voyage à la vitesse de la lumière. Il emporte davantage d’énergie en moyenne que l’électron qui est lourd en comparaison malgré son extrême légèreté. En conséquence peu d’électrons bêta approchent l’énergie maximale permise, alors que la majorité sont peu énergiques.
La forme du spectre est bénéfique pour la radioprotection, car la prédominance des bêta les moins énergiques les rend plus faciles à arrêter.
En radioprotection, on s’intéressera davantage à l’énergie moyenne des électrons bêta qu’à leur énergie maximale. Cette énergie moyenne varie dans de grandes proportions, allant de 5,69 keV pour le tritium à 695 keV pour un puissant émetteur bêta comme le phosphore-32. Les énergies bêta sont toujours aussi très inférieures aussi à celles des désintégrations alpha qui sont supérieures à 4000 keV (4 MeV).
La désintégration bêta est souvent accompagnée de l’émission de rayons gamma de désexcitation. Cette émission diminue d’autant l’énergie à partager entre l’électron et l’antineutrino. Par exemple l’énergie disponible dans la désintégration bêta du césium-137 est de 1176 keV, mais dans 95 % des cas la désintégration est accompagnée d’un gamma caractéristique de 662 keV auquel cas l’énergie disponible n’est plus que de 514 keV. Le spectre bêta observé est donc la somme à raison de 5% et 95 % des spectres correspondant à ces deux modes
Du fait du phénomène de conversion interne, les gamma peuvent également transmettre leur énergie à des électrons du cortège de l’atome, qui ne sont pas à proprement parler des électrons bêta.
Les autres articles sur le sujet « Rayons alpha, bêta, gamma »
Radioactivite alpha (α)
Comment des noyaux trop lourds perdent du poids … La radioactivité alpha (α) fut d’ab[...]
Radioactivite bêta (β)
Où comment corriger un excès de neutrons ou de protons La radioactivité bêta (β) fut observée sou[...]
La capture électronique
Un mode mineur, alternative de la radioactivité bêta-plus La capture électronique est un mode de [...]
Positon (anti-électron)
L’électron positif, corpuscule d’avant-garde de l’antimatière Le positon ou pos[...]
neutrino-électron
Un électron qui aurait perdu sa charge électrique La manière la plus simple de concevoir un neutr[...]
Muons
Un électron lourd présent dans le rayonnement cosmique Cette particule a été observée pour la pre[...]
Radioactivité gamma (γ)
Où comment les noyaux se débarrassent d’un surplus d’énergie C’est en 1900, que[...]
Désexcitations nucléaires
La lumière des noyaux On disait autrefois que tous les chemins menaient à Rome. L’adage pou[...]
Conversion Interne
La désexcitation du noyau par éjection d’électrons atomiques La conversion interne est un m[...]
Transmutations nucléaires
Le vieux rêve des alchimistes … Transformer la nature chimique d’un atome Les [...]